skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Medeiros, Juliana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Diggle, P (Ed.)
    Combining ecological questions with evolutionary con- text generates novel insight into both ecology and evo- lution. However, our ability to draw broad inferences can be limited by the taxonomic diversity present within and across species at a site. Public gardens (including botan- ical gardens and arboreta) may focus solely on aesthetics in developing their gardens, but some public gardens include scientific inquiry and conservation at the core of their missions (Hohn, 2022). These scientifically oriented public gardens follow community standards of excellence (Hohn, 2022) to provide unique access to curated plant collections specifically designed to gather high levels of biodiversity, both among and within species, at a single geographic location. These research‐grade collections include long‐lived species cared for over many decades. Such public gardens have long histories of conducting and supporting research harnessing the power inherent in these diverse collections, including explorations of sys- tematics, ecophysiology, and ecology. By bringing together species, as well as individuals within species, from across broad spatial ranges into a single site, these collections offer living repositories of diversity ripe for scientific exploration as de facto common gardens (Dosmann, 2006; Dosmann and Groover, 2012; Primack et al., 2021). 
    more » « less
  2. Abstract Phytophthora cinnamomi, which causes the disease root rot, is an oomycete pathogen that is damaging to woody plants, including many horticulturally important groups, such as Rhododendron. Infecting the root of plants, Phytophthora cinnamomi inhibits water uptake, leading to root damage, wilting, and increased rates of plant mortality. Some observations suggest that P. cinnamomi infection corresponds to changes in leaf coloration, though whether this indicates a plant stress response or plant damage is generally unknown. We used leaf color analysis to test for differences in leaf discoloration between plants inoculated with the pathogen and control plants. We demonstrate a significant link between leaf discoloration in Rhododendron species and Phytophthora cinnamomi inoculation. This method was most useful when mortality was not exceptionally high, and analyzers must consider mortality as well as leaf damage in quantifying effects of the pathogen. Plants with leaf discoloration were 3.3 times more likely to die 2 weeks from our leaf census than plants with no leaf discoloration (P =0.005). This method is particularly inexpensive to implement, making it a valuable alternative to multi-spectral or hyperspectral imaging, especially in contexts such as horticulture and citizen science, where the high speed and low-cost nature of this technique might prove valuable. Species used in this study: root rot disease pathogen (Phytophthora cinnamomi Rands); Rhododendron atlanticum (Ashe) Rehder; Rhododendron brachycarpum D.Don ex G.Don; Rhododendron kiusianum Makino; Rhododendron maximum L.; Rhododendron minus Michx.; Rhododendron calendulaceum (Michx.) Torr.; Rhododendron kaempferi Planch.; Rhododendron keiskei Miq. Chemicals used in this study: Fosal Select Aliette/aluminum phosphite. 
    more » « less
  3. Background and aims Plant interactions with soil microbial communities are critical for understanding plant health, improving horticultural and agricultural outcomes, and maintaining diverse natural communities. In some cases, disease suppressive soils enhance plant survival in the presence of pathogens. However, species-specific differences and seasonal variation complicate our understanding of the drivers of soil fungal communities and their consequences for plants. Here, we aim to describe soil fungal communities across Rhododendron species and seasons and as well as the test for fungal indicators of species and seasons in the soil. Further, we tested for correlations between fungal community composition and prior experimental quantification of disease suppressive soils. Methods We conducted high throughput sequencing of the fungal communities found in soil collected under 14 Rhododendron species and across 2 seasons (April, October) at two sites in Ohio, USA. We described these soils and used phylogenetic analyses to ask whether fungal community composition correlated with increased plant survival with the addition of whole soil communities from a prior greenhouse experiment. Results We found effects of Rhododendron species and season on fungal communities. Fungal community composition correlated with survival following exposure to whole soil microbial communities, though this result depended on the presence of R. minus. We identified 45 Trichoderma taxa across our soil samples, and some Trichoderma were significantly associated with particular Rhododendron species in indicator species analyses. Conclusion The correlation between plant responses to soil biotic communities and fungal community composition, as well as the presence of potential beneficial taxa such as Trichoderma and mycorrhizal fungi, are consistent with fungal-mediated survival benefits from the pathogen Phytophthora cinnamomi. 
    more » « less
  4. Guo, Xiao (Ed.)
    Eastern redcedar Juniperus virginiana is encroaching into new habitats, which will affect native ecosystems as this species competes with other plants for available resources, including water. We designed a greenhouse experiment to investigate changes in soil moisture content and rooting depths of two-year-old J . virginiana saplings growing with or without competition. We had four competition treatments: 1) none, 2) with a native tree ( Quercus stellata ), 3) with an invasive grass ( Bromus inermis ), and 4) with both Q . stellata and B . inermis . We measured soil moisture content over two years as well as root length, total biomass, relative water content, midday water potential, and mortality at the end of the experiment. When J . virginiana and B . inermis grew together, water depletion occurred at both 30–40 cm and 10–20 cm. Combined with root length results, we can infer that J . virginiana most likely took up water from the deeper layers whereas B . inermis used water from the top layers. We found a similar pattern of water depletion and uptake when J . virginiana grew with Q . stellata , indicating that J . virginiana took up water from the deeper layers and Q . stellata used water mostly from the top soil layers. When the three species grew together, we found root overlap between J . virginiana and Q . stellata . Despite the root overlap, our relative water content and water potential indicate that J . virginiana was not water stressed in any of the plant combinations. Regardless, J . virginiana saplings had less total biomass in treatments with B . inermis and we recorded a significantly higher mortality when J . virginiana grew with both competitors. Root overlap and partitioning can affect how J . virginiana perform and adapt to new competitors and can allow their co-existence with grasses and other woody species, which can facilitate J . virginiana encroachment into grasslands and woodlands. Our data also show that competition with both Q . stellata and B . inermis could limit establishment, regardless of water availability. 
    more » « less
  5. Background and Aims The soil-borne pathogen Phytophthora cinnamomi causes a deadly plant disease. Phosphite is widely used as an effective treatment to protect plants from Phytophthora cinnamomi. Phosphite as a common fungicide might influence the composition of soil fungal communities. However, whether the belowground effects of phosphitemediated protections are direct or indirectly mediated through soil biota are unknown. Therefore, exploring belowground effects could contribute to the evaluation of the sustainability of phosphite use and tests hypotheses about direct versus indirect effects in pathogen response. Methods Our greenhouse pot experiment on Rhododendron species had either an after-pathogen or a before-pathogen use of phosphite to compare and evaluate plant and soil fungal responses to phosphite and the presence of an oomycete pathogen Phytophthora cinnamomi. The factorial experiment also included with and without pathogen and soil biota treatments, for a test of interactive effects. High throughput sequencing analyzed the soil fungal communities, and we measured the diversity, evenness and richness of soil fungi. Results Phosphite effectively increased survival of Rhododendron species. It altered the composition of soil fungal communities, and the timing of using phosphite determined the way in which the fungal communities changed. Trichoderma taxa also responded to soil phosphite and Phytophthora cinnamomi. Conclusions The benefits of antagonistic fungi such as Trichoderma are context-dependent, suggesting protection against pathogens depends on the timing of phosphite application. This study provides evidence that phosphite-mediated pathogen protection includes both direct benefits to plants and indirect effects mediated through the soil fungal community. 
    more » « less
  6. Abstract The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size‐cell size allometry interacts with variation in biomass allocation (i.e. LMA) to influence the maximum surface conductance to CO2and the rate of resource turnover as measured by leaf water residence time. We sampled both evergreen and deciduousRhododendron(Ericaceae) taxa from wild populations and botanical gardens, including naturally occurring putative hybrids and artificially generated hybrids. We measured genome size, anatomical traits related to cell sizes, and morphological traits related to water content and dry mass allocation. Consistent with the LES, higher LMA was associated with slower water residence times, and LMA was strongly associated with leaf thickness. Although anatomical and morphological traits varied orthogonally to each other, cell size had a pervasive impact on leaf functional anatomy: for a given leaf thickness, reducing cell size elevated the leaf surface conductance and shortened the mean water residence time. These analyses clarify how anatomical traits related to genome size‐cell size allometry can influence leaf function independently of morphological traits related to leaf longevity and durability. 
    more » « less